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Machine Learning

• Machine Learning (ML) Systems work around humans
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Home Care Policing Self-Driving Cars

Machine-learning is increasingly used in safety-critical systems 



Dragons of Machine Learning (ML)

• New dragons
• Adversarial Inputs (Security)
• Edge cases (Reliability)
• Confidentiality/Privacy 

• Old dragons
• Soft errors
• Permanent faults
• Logical errors
• Implementation faults (bugs)
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Soft Error Problem

Soft errors are increasing in computer systems
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Source: Shekar Borkar (Intel)  - 2005
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SoC soft error trends 
Bitcell SER FIT rate per node 
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Why Soft Errors?
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[Our work - SC 2017]

• Safety standard – Automotive Safety Integrity Level (ASIL-D)
• Error rate <10  FIT (per 1 billion hours) – ISO 26262
• DNN systems do not meet the requirement without protection

[Saxena’16]



Traditional Solutions

• Full redundancy

• Expensive for cost-sensitive domains such as automotive sector

• Profit margin of mid-class sedan: 8-10%

• Efficiency regarding per-unit-price

• High overheads in performance and energy

• Significant reduction of processing frame rate which is critical in high-speed self-driving

• Significant energy and cooling costs 
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Outline

• Motivation and Goals

• Fault-Injection into Deep Neural Networks [SC’17]

• BinFI: Efficient Fault Injector for ML systems [SC’19  - to appear]

• Ongoing Work and Conclusions
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DNN and Accelerators

8

Memory Hierarchy

PE PE

PE PE

Spatial Architecture

Processing Element (PE)

… …

Filter

Input Image
Output Image

Many such
channels

PE

PE
Convolution



Fault Model and Fault Injection
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Processing Element (PE)

• Inject one random single bit-flip fault per one inferencing (input)

• 3,000 trials per each latch (less than 1% error bars)

• Silent Data Corruption (SDC): Mismatch with the winner of fault-free execution



Experimental Setup
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• Goal: 
• Investigate error sensitivity of different neural networks , data types, bit 

positions, positions and types of layers, as well as values 

• Design cost-effective mitigation techniques

• Neural Networks: 

• AlexNet, CaffeNet, NiN, ConvNet

• Data Types: 

• 4 Integers and 3 Floating Points



SDC Types
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SDC1: 
Mismatch between winners from faulty and fault-free execution.

SDC5: 
Winner is not in top 5 predictions in the faulty execution.

SDC10%: 
The confidence of the winner drops more than 10%.

SDC20%: 
The confidence of the winner drops more than 20%.



RQ1: SDC in DNNs
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1.All SDCs defined have similar SDC probabilities

2.SDC probabilities are different in different DNNs

3.SDC probabilities vary a lot using different data types



RQ2: Bit Sensitivity
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FP data types:

FxP data types:
1. High-order bits are vulnerable
2. Larger dynamic value range allows more vulnerable bits

Only certain exponent bits are vulnerable to SDCs



RQ3: Value Changes
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SDC Benign

AlexNet, PE Errors, Float16

If a neuron value is changed to be a large value 
under a fault, it likely causes SDC



RQ4: SDC in Different Layers
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1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet

2.SDC probability increases as layer numbers increase 



Mitigation: Data Types
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Mitigation: Hardware
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1. Only high-order bits are vulnerable
2. Sliding binary points controls the amount of vulnerable bits

Selective latch hardening:
Can reduce FIT rate by 100X with 20-25% area overhead



Takeaways

• DNNs are not as resilient as one may think
• Single bit-flips can lead to safety-critical outcomes
• Accelerator platforms exacerbate the situation

• Key findings from fault injection study
• Restricted range improves resilience
• Higher-order bits are more sensitive
• Errors that occur in later layers are more impactful
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https://github.com/DependableSystemsLab/DNNFI

https://github.com/DependableSystemsLab/DNNFI


Outline

• Motivation and Goals

• Fault-Injection into Deep Neural Networks [SC’17]

• BinFI: Efficient Fault Injector for ML systems [SC’19  - to appear]

• Ongoing Work and Conclusions
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Motivation
• Existing approaches – fault injection (FI)

• Exhaustive FI: Ground truth, high overhead (impractical)

• Random FI: Statistically significant results, low overhead (not good enough) 
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Key Insight
• In ML, a fault only results in numerical changes in the output
• Output by ML is usually determined by numerical magnitude 

• Larger deviation in the Outputà higher probability of SDCs
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ML computations and Monotonicity property
• Approximate monotonicity: A function being non-strictly monotonic in a 

non-trivial interval

Ø E.g., , is approximate monotonic when ! > 0

• Approach: Analyze the property of the ML functions, which propagate 

the fault from fault site to the output 
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Our Insight
• Approximate the fault propagation behavior as an approximate 

monotonic function.

• Implication: Larger input deviation (fault at higher-order bit) generates 

larger deviation at the output, thus more likely to cause SDCs
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Our Approach: Binary fault injection (BinFI)
• Identify SDC boundary: faults at higher-order bits would lead to SDCs 

and faults from lower-order bits would be masked.
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An example – kNN (k=1)
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• Each neighbor (|"| in total) has a distance to the input image (#$%&, ( ∈ |"| )

• For the nearest neighbor , we have #$%* < #$%,, ∀. ∈ " , $ ≠ ..
• Fault propagation (FP): Fault site à tf.abs() à distance (output)

• Mapping from fault site to output: 01 2$304$5 = ±82% 2$304$5 , +	for positive value 

deviation; − for negative value deviation.

• SDC occurs if the nearest neighbor has changed (i.e., #$%* > #$%,, ∃. ∈ |(|), due to bit-flip. 

Fault
propagation



An example (cont.)
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Assume fault affects the !"#$, and !"#% remains unchanged: 

• !"#′$ = !"#$ + )*# *"+,-"./ , bit-flip occurs at 123 bit.

!"#′′$ = !"#$ + )*# *"+,-".4 , 1 > 6 , i.e., 123 bit is the high-order bit.

• We have: )*# *"+,-"./ > )*#(*"+,-".4), thus !"#′$> !"#′′$.
• If fault at 9:; bit does not lead to SDC (by FI), fault at <:; bit (lower-order) will not lead 

to SDC, without actual FI, because =>?′′> < =>?′′> < =>?A.

,B *"+,-".
= ±)*# *"+,-".



Analyzing ML computations

• Monotonic property of ML computation:

Ø Conv computation:                                                          

Ø Assume two faults !" > !$ > 0 at same location (i.e., different bits). 

Ø We have:                                , we call Conv is monotonic.

• Apply to most of (not all, e.g., LRN) the other computations, e.g., Pooling, ReLu.
27

• Common ML computations in 
modern DNNs:
Ø E.g., AlexNet, VGGNet, 

InceptionNet, Dave 
steering model, etc.



Evaluation
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• Compare different FI approaches on: 
1. Identifying the critical bits.
2. Measuring the overall resilience.
3. Overhead.

• FI tool: TensorFI [1]

[1] https://github.com/DependableSystemsLab/TensorFI



Results
1. BinFI: recall 99+% of critical bits with 99+% precision.

Random FI: recall less than 65% with 4x overhead more than binFI
2. Overall resilience measurement: Random FI ≈ BinFI 
3. Overhead: ~20% of that by exhaustive FI (binary search). 

29

Recall Overhead



Takeaways

• Many common ML computations exhibit monotonicity

• The monotonicity property constrains the fault propagation

• Critical bits in ML program cluster around higher-order bits

• Can be efficiently found through a binary-search like approach
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https://github.com/DependableSystemsLab/TensorFI

https://github.com/DependableSystemsLab/TensorFI


Outline

• Motivation and Goals

• Fault-Injection into Deep Neural Networks [SC’17]

• BinFI: an Efficient Fault Injector for ML systems [SC’19  - to appear]

• Ongoing Work and Conclusions
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Ongoing Work: Resilient ML
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Deriving ML algorithms resilient to perturbations
- Small changes à Similar outputs
- Convergence properties
- Differences in outputs - safety-critical



Conclusions
• Machine learning reliability is an important problem
• Old problems like soft-errors are still an issue
• Getting worse with scale and deployment
• Violation of safety standards (e.g., ISO 26262)

• Single bit-flip faults can lead to safety-critical outcomes
• Need both hardware and software-level protection techniques

• BinFI: Efficient fault-injection for safety-critical ML systems
• Identified safety violations in a fraction of time as exhaustive injections
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http://blogs.ubc.ca/karthik/


