
Slaying Old Dragons: Error-
Resilient Machine Learning for

Safety-Critical Applications

Karthik Pattabiraman, Guanpeng (Justin) Li, Zitao Chen

Siva Hari, Michael Sullivan, Tim Tsai, Joel Emer, Steve Keckler

Nathan DeBardeleben

Machine Learning

• Machine Learning (ML) Systems work around humans

2

Home Care Policing Self-Driving Cars

Machine-learning is increasingly used in safety-critical systems

Dragons of Machine Learning (ML)

• New dragons
• Adversarial Inputs (Security)
• Edge cases (Reliability)
• Confidentiality/Privacy

• Old dragons
• Soft errors
• Permanent faults
• Logical errors
• Implementation faults (bugs)

3

Soft Error Problem

Soft errors are increasing in computer systems

4

Source: Shekar Borkar (Intel) - 2005
11 DATE 2014 DATE 2014

SoC soft error trends
Bitcell SER FIT rate per node

0

100

200

300

400

500

600

700

200 150 100 50 0

SCU Avg/node MCU Avg/node

SoC SER FIT rate per node

1

10

100

1000

200 150 100 50 0

Memory SER Logic SER

Even though per memory bitcell SER sensitivity is decreasing, overall FIT per SoC is increasing

Source: iRoC

[Chandra et. al., DATE’14]

Feature
Size

Er
ro

r
Ra

te

Why Soft Errors?

5

[Our work - SC 2017]

• Safety standard – Automotive Safety Integrity Level (ASIL-D)
• Error rate <10 FIT (per 1 billion hours) – ISO 26262
• DNN systems do not meet the requirement without protection

[Saxena’16]

Traditional Solutions

• Full redundancy

• Expensive for cost-sensitive domains such as automotive sector

• Profit margin of mid-class sedan: 8-10%

• Efficiency regarding per-unit-price

• High overheads in performance and energy

• Significant reduction of processing frame rate which is critical in high-speed self-driving

• Significant energy and cooling costs

6

Outline

• Motivation and Goals

• Fault-Injection into Deep Neural Networks [SC’17]

• BinFI: Efficient Fault Injector for ML systems [SC’19 - to appear]

• Ongoing Work and Conclusions

7

DNN and Accelerators

8

Memory Hierarchy

PE PE

PE PE

Spatial Architecture

Processing Element (PE)

… …

Filter

Input Image
Output Image

Many such
channels

PE

PE
Convolution

Fault Model and Fault Injection

9

Processing Element (PE)

• Inject one random single bit-flip fault per one inferencing (input)

• 3,000 trials per each latch (less than 1% error bars)

• Silent Data Corruption (SDC): Mismatch with the winner of fault-free execution

Experimental Setup

10

• Goal:
• Investigate error sensitivity of different neural networks , data types, bit

positions, positions and types of layers, as well as values

• Design cost-effective mitigation techniques

• Neural Networks:

• AlexNet, CaffeNet, NiN, ConvNet

• Data Types:

• 4 Integers and 3 Floating Points

SDC Types

11

SDC1:
Mismatch between winners from faulty and fault-free execution.

SDC5:
Winner is not in top 5 predictions in the faulty execution.

SDC10%:
The confidence of the winner drops more than 10%.

SDC20%:
The confidence of the winner drops more than 20%.

RQ1: SDC in DNNs

12

1.All SDCs defined have similar SDC probabilities

2.SDC probabilities are different in different DNNs

3.SDC probabilities vary a lot using different data types

RQ2: Bit Sensitivity

13

FP data types:

FxP data types:
1. High-order bits are vulnerable
2. Larger dynamic value range allows more vulnerable bits

Only certain exponent bits are vulnerable to SDCs

RQ3: Value Changes

14

SDC Benign

AlexNet, PE Errors, Float16

If a neuron value is changed to be a large value
under a fault, it likely causes SDC

RQ4: SDC in Different Layers

15

1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet

2.SDC probability increases as layer numbers increase

Mitigation: Data Types

16

32
Restraining dynamic value range

suppresses SDCs
Type-21 Type-5

10 bits21 bits1 bit

Sign bit Integer bits Fractional bits

Binary Point

Type-21:

26 bits5 bits1 bitType-5:

Trade off between
precision and range

32-Bit Fixed-Point data types as examples

SD
C

Ra
te

Mitigation: Hardware

17

Type-21 Type-5

0%

10%

20%

30%

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1SD
C	
PR

O
BA

BI
LI
TY

Bit	Position

Binary Point

0%

1%

2%

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1SD
C	
PR

O
BA

BI
LI
TY

Bit	Position

Binary Point

10 bits21 bits1 bit

Sign bit Integer bits Fractional bits
Type-21:

26 bits5 bits1 bitType-5:

Binary Point

SD
C

Ra
te

SD
C

Ra
te

1. Only high-order bits are vulnerable
2. Sliding binary points controls the amount of vulnerable bits

Selective latch hardening:
Can reduce FIT rate by 100X with 20-25% area overhead

Takeaways

• DNNs are not as resilient as one may think
• Single bit-flips can lead to safety-critical outcomes
• Accelerator platforms exacerbate the situation

• Key findings from fault injection study
• Restricted range improves resilience
• Higher-order bits are more sensitive
• Errors that occur in later layers are more impactful

18

https://github.com/DependableSystemsLab/DNNFI

https://github.com/DependableSystemsLab/DNNFI

Outline

• Motivation and Goals

• Fault-Injection into Deep Neural Networks [SC’17]

• BinFI: Efficient Fault Injector for ML systems [SC’19 - to appear]

• Ongoing Work and Conclusions

19

Motivation
• Existing approaches – fault injection (FI)

• Exhaustive FI: Ground truth, high overhead (impractical)

• Random FI: Statistically significant results, low overhead (not good enough)

20

1 0 0 1 0 1 1 1

SDC Non-SDC

0 0 1 1 1 1 0 1

Overall SDC = 25%

Which part is more prone
to SDCs

Key Insight
• In ML, a fault only results in numerical changes in the output
• Output by ML is usually determined by numerical magnitude

• Larger deviation in the Outputà higher probability of SDCs
21

1 0 3

0 0 2

4 0 9

0 4 0

0 4 0

0 4 0

0 8 0

0 8 0

0 8 0

1 10 1

1 10 0

1 10 0

output =8
Weak response

output = 120
Medium response

output = 240
Strong response

Input ML target
(digit 1)

Output

M
on

ot
on

ic

Convolution
(dot-product)

Input-1
Weak feature

Input-2
Medium feature

Input-3
Strong feature

! "
$

% &
' (!%+"& + #' +$(

ML computations and Monotonicity property
• Approximate monotonicity: A function being non-strictly monotonic in a

non-trivial interval

Ø E.g., , is approximate monotonic when ! > 0

• Approach: Analyze the property of the ML functions, which propagate

the fault from fault site to the output

22

ML function 1 ML function 2 ML function N…

Composite function
Analyze the property

(approximate monotone)

Our Insight
• Approximate the fault propagation behavior as an approximate

monotonic function.

• Implication: Larger input deviation (fault at higher-order bit) generates

larger deviation at the output, thus more likely to cause SDCs
23

Co
nv

Po
ol FCCo
nv

Co
nv

Po
ol

Co
nv

Co
nv

Po
ol

Co
nv

Co
nv

Co
nv

Po
ol

Co
nv

Co
nv

Co
nv

Po
ol

Co
nv

Co
nv FC FC

Input Output

Fault propagation (approximate monotone)

VGG16

Our Approach: Binary fault injection (BinFI)
• Identify SDC boundary: faults at higher-order bits would lead to SDCs

and faults from lower-order bits would be masked.

24

1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1

SDC Non-SDC

+ +

Our prior work New observation: analyzing
the montonic property

An example – kNN (k=1)

25

• Each neighbor (|"| in total) has a distance to the input image (#$%&, (∈ |"|)

• For the nearest neighbor , we have #$%* < #$%,, ∀. ∈ " , $ ≠ ..
• Fault propagation (FP): Fault site à tf.abs() à distance (output)

• Mapping from fault site to output: 01 2$304$5 = ±82% 2$304$5 , +	for positive value

deviation; − for negative value deviation.

• SDC occurs if the nearest neighbor has changed (i.e., #$%* > #$%,, ∃. ∈ |(|), due to bit-flip.

Fault
propagation

An example (cont.)

26

Assume fault affects the !"#$, and !"#% remains unchanged:

• !"#′$ = !"#$ +)*# *"+,-"./ , bit-flip occurs at 123 bit.

!"#′′$ = !"#$ +)*# *"+,-".4 , 1 > 6 , i.e., 123 bit is the high-order bit.

• We have:)*# *"+,-"./ >)*#(*"+,-".4), thus !"#′$> !"#′′$.
• If fault at 9:; bit does not lead to SDC (by FI), fault at <:; bit (lower-order) will not lead

to SDC, without actual FI, because =>?′′> < =>?′′> < =>?A.

,B *"+,-".
= ±)*# *"+,-".

Analyzing ML computations

• Monotonic property of ML computation:

Ø Conv computation:

Ø Assume two faults !" > !$ > 0 at same location (i.e., different bits).

Ø We have: , we call Conv is monotonic.

• Apply to most of (not all, e.g., LRN) the other computations, e.g., Pooling, ReLu.
27

• Common ML computations in
modern DNNs:
Ø E.g., AlexNet, VGGNet,

InceptionNet, Dave
steering model, etc.

Evaluation

28

• Compare different FI approaches on:
1. Identifying the critical bits.
2. Measuring the overall resilience.
3. Overhead.

• FI tool: TensorFI [1]

[1] https://github.com/DependableSystemsLab/TensorFI

Results
1. BinFI: recall 99+% of critical bits with 99+% precision.

Random FI: recall less than 65% with 4x overhead more than binFI
2. Overall resilience measurement: Random FI ≈ BinFI
3. Overhead: ~20% of that by exhaustive FI (binary search).

29

Recall Overhead

Takeaways

• Many common ML computations exhibit monotonicity

• The monotonicity property constrains the fault propagation

• Critical bits in ML program cluster around higher-order bits

• Can be efficiently found through a binary-search like approach

30
https://github.com/DependableSystemsLab/TensorFI

https://github.com/DependableSystemsLab/TensorFI

Outline

• Motivation and Goals

• Fault-Injection into Deep Neural Networks [SC’17]

• BinFI: an Efficient Fault Injector for ML systems [SC’19 - to appear]

• Ongoing Work and Conclusions

31

Ongoing Work: Resilient ML

32

Deriving ML algorithms resilient to perturbations
- Small changes à Similar outputs
- Convergence properties
- Differences in outputs - safety-critical

Conclusions
• Machine learning reliability is an important problem
• Old problems like soft-errors are still an issue
• Getting worse with scale and deployment
• Violation of safety standards (e.g., ISO 26262)

• Single bit-flip faults can lead to safety-critical outcomes
• Need both hardware and software-level protection techniques

• BinFI: Efficient fault-injection for safety-critical ML systems
• Identified safety violations in a fraction of time as exhaustive injections

33
http://blogs.ubc.ca/karthik/

