Slaying Old Dragons: Error-Resilient Machine Learning for Safety-Critical Applications

Karthik Pattabiraman, Guanpeng (Justin) Li, Zitao Chen

Siva Hari, Michael Sullivan, Tim Tsai, Joel Emer, Steve Keckler

Nathan DeBardeleben

Machine Learning

• Machine Learning (ML) Systems work around humans

Home Care

Policing

Self-Driving Cars

Machine-learning is increasingly used in safety-critical systems

Dragons of Machine Learning (ML)

New dragons

- Adversarial Inputs (Security)
- Edge cases (Reliability)
- Confidentiality/Privacy

Old dragons

- Soft errors
- Permanent faults
- Logical errors
- Implementation faults (bugs)

Soft Error Problem

Soft errors are increasing in computer systems

- Safety standard Automotive Safety Integrity Level (ASIL-D)
 - Error rate <10 FIT (per 1 billion hours) ISO 26262
 - DNN systems do not meet the requirement without protection

Traditional Solutions

- Full redundancy
 - Expensive for cost-sensitive domains such as automotive sector
 - Profit margin of mid-class sedan: 8-10%
 - Efficiency regarding per-unit-price
 - High overheads in performance and energy
 - Significant reduction of processing frame rate which is critical in high-speed self-driving
 - Significant energy and cooling costs

Outline

- Motivation and Goals
- Fault-Injection into Deep Neural Networks [SC'17]
- BinFI: Efficient Fault Injector for ML systems [SC'19 to appear]
- Ongoing Work and Conclusions

DNN and Accelerators

Spatial Architecture

Fault Model and Fault Injection

- Inject one random single bit-flip fault per one inferencing (input)
- 3,000 trials per each latch (less than 1% error bars)
- Silent Data Corruption (SDC): Mismatch with the winner of fault-free execution

Experimental Setup

- Goal:
 - Investigate error sensitivity of different neural networks , data types, bit positions, positions and types of layers, as well as values
 - Design cost-effective mitigation techniques
- Neural Networks:
 - AlexNet, CaffeNet, NiN, ConvNet
- Data Types:
 - 4 Integers and 3 Floating Points

SDC Types

SDC1:

Mismatch between winners from faulty and fault-free execution.

SDC5:

Winner is not in top 5 predictions in the faulty execution.

SDC10%:

The confidence of the winner drops more than 10%.

SDC20%:

The confidence of the winner drops more than 20%.

RQ1: SDC in DNNs

1.All SDCs defined have similar SDC probabilities2.SDC probabilities are different in different DNNs3.SDC probabilities vary a lot using different data types

RQ2: Bit Sensitivity

RQ3: Value Changes

AlexNet, PE Errors, Float16

RQ4: SDC in Different Layers

1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet 2.SDC probability increases as layer numbers increase

Takeaways

• DNNs are not as resilient as one may think

- Single bit-flips can lead to safety-critical outcomes
- Accelerator platforms exacerbate the situation

• Key findings from fault injection study

- Restricted range improves resilience
- Higher-order bits are more sensitive
- Errors that occur in later layers are more impactful

https://github.com/DependableSystemsLab/DNNFI

Outline

- Motivation and Goals
- Fault-Injection into Deep Neural Networks [SC'17]
- BinFI: Efficient Fault Injector for ML systems [SC'19 to appear]
- Ongoing Work and Conclusions

Motivation

- Existing approaches fault injection (FI)
 - Exhaustive FI: Ground truth, high overhead (impractical)
 - Random FI: Statistically significant results, low overhead (not good enough)

Key Insight

- In ML, a fault only results in numerical changes in the output
- Output by ML is usually determined by numerical magnitude

• Larger deviation in the Output → higher probability of SDCs

ML computations and Monotonicity property

 Approximate monotonicity: A function being non-strictly monotonic in a non-trivial interval

 \succ E.g., f(x) = 100 * max(x - 1, 0) - max(x, 0), is approximate monotonic when x > 0

• Approach: Analyze the property of the ML functions, which propagate the fault from fault site to the output

22

Our Insight

• Approximate the fault propagation behavior as an *approximate*

• Implication: Larger input deviation (fault at higher-order bit) generates

larger deviation at the output, thus more likely to cause SDCs

Our Approach: Binary fault injection (BinFI)

• Identify SDC boundary: *faults at higher-order bits would lead to SDCs and faults from lower-order bits would be masked.*

An example -kNN (k=1)

- Each neighbor (|N| in total) has a distance to the input image ($dis_n, n \in |N|$)
- For the *nearest neighbor*, we have $dis_i < dis_j, \forall j \in |N|, i \neq j$.
- *Fault propagation* (FP): Fault site \rightarrow tf.abs() \rightarrow distance (output)
 - Mapping from fault site to output: $FP(bitFlip) = \pm abs(bitFlip)$, + for positive value deviation; for negative value deviation.
- SDC occurs if the *nearest neighbor* has changed (i.e., $dis_i > dis_j$, $\exists j \in [n]$), due to bit_{25} flip.

An example (cont.)

1 negPixel = tf.negative(testImg) FP(bitFlip)
= ±abs(bitFlip)
2 relativeDistance = tf.add(neighbors, negPixel)
3 absDistance = tf.abs(relativeDistance)
4 distance = tf.reduce_sum(absDistance, reduction_indices=1) nearestNeighbor = tf.arg_min(distance, 0)

Assume fault affects the dis_i , and dis_i remains unchanged:

• $dis'_i = dis_i + abs(bitFlip_m)$, bit-flip occurs at m_{th} bit.

 $dis''_i = dis_i + abs(bitFlip_n), m > n$, i.e., m_{th} bit is the high-order bit.

- We have: $abs(bitFlip_m) > abs(bitFlip_n)$, thus $dis'_i > dis''_i$.
- If fault at m_{th} bit does not lead to SDC (by FI), fault at n_{th} bit (lower-order) will not lead to SDC, without actual FI, because $dis''_i < dis''_i < dis_i$.

Analyzing ML computations

- Common ML computations in modern DNNs:
 - E.g., AlexNet, VGGNet, InceptionNet, Dave steering model, etc.

Basic	Conv; MatMul; Add (BiasAdd)	
Activation	ReLu; ELu;	
Pooling	Max-pool; Average-pool	
Normalization	Batch normalization (BN);	
	Local Response Normalization (LRN)	
Data transformation	Reshape; Concatenate; Dropout	
Others	SoftMax; Residual function	

- *Monotonic* property of ML computation:
 - ► Conv computation: $\vec{X} \cdot \vec{W} = \sum x_i w_i, x_i \in \vec{X}, w_i \in \vec{W}$
 - > Assume two faults $x_1 > x_2 > 0$ at same location (i.e., different bits).
 - ≻ We have: $|x_1w_i| \ge |x_2w_i|$, we call Conv is *monotonic*.
- Apply to most of (not all, e.g., LRN) the other computations, e.g., Pooling, ReLu.

Evaluation

- Compare different FI approaches on:
 - 1. Identifying the critical bits.
 - 2. Measuring the overall resilience.
 - 3. Overhead.
- FI tool: TensorFI [1]

[1] https://github.com/DependableSystemsLab/TensorFI

Dataset	Dataset Description	ML models
MNIST [9]	Hand-written digits	2-layer NN
		LeNet-4 [47]
Survive [13]	Prediction of patient	kNN
	survival	
Cifar-10 [4]	General images	AlexNet [46]
ImageNet [24]	General images	VGG16 [71]
German traffic sign [38]	Traffic sign images	VGG11 [71]
Driving [6]	Driving video frames	Nvidia Dave [19]
		Comma.ai [5]

Results

- BinFI: recall 99+% of critical bits with 99+% precision.
 Random FI: recall less than 65% with 4x overhead more than binFI
- 2. Overall resilience measurement: Random FI \approx BinFI
- 3. Overhead: ~20% of that by exhaustive FI (binary search).

Takeaways

- Many common ML computations exhibit monotonicity
- The monotonicity property constrains the fault propagation
- Critical bits in ML program cluster around higher-order bits
- Can be efficiently found through a binary-search like approach

https://github.com/DependableSystemsLab/TensorFI

Outline

- Motivation and Goals
- Fault-Injection into Deep Neural Networks [SC'17]
- BinFI: an Efficient Fault Injector for ML systems [SC'19 to appear]
- Ongoing Work and Conclusions

Ongoing Work: Resilient ML

Deriving ML algorithms resilient to perturbations

- Small changes \rightarrow Similar outputs
- Convergence properties
- Differences in outputs safety-critical

Conclusions

• Machine learning reliability is an important problem

- Old problems like soft-errors are still an issue
- Getting worse with scale and deployment
- Violation of safety standards (e.g., ISO 26262)
- Single bit-flip faults can lead to safety-critical outcomes
 - Need both hardware and software-level protection techniques
- BinFI: Efficient fault-injection for safety-critical ML systems
 - Identified safety violations in a fraction of time as exhaustive injections

http://blogs.ubc.ca/karthik/