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Machine Learning

* Machine Learning (ML) Systems work around humans

Home Care Policing Self-Driving Cars

Machine-learning is increasingly used in safety-critical systems
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Dragons of Machine Learning (ML)

* New dragons
* Adversarial Inputs (Security)
* Edge cases (Reliability)
 Confidentiality/Privacy

* Old dragons
e Soft errors
* Permanent faults
* Logical errors
* Implementation faults (bugs)




Soft Error Problem

Soft errors are increasing in computer systems
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Source: Shekar Borkar (Intel) - 2005



Why Soft Errors?
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e Safety standard — Automotive Safety Integrity Level (ASIL-D)
* Error rate <10 FIT (per 1 billion hours) —1SO 26262
* DNN systems do not meet the requirement without protection



Traditional Solutions

* Full redundancy

* Expensive for cost-sensitive domains such as automotive sector
* Profit margin of mid-class sedan: 8-10%
 Efficiency regarding per-unit-price

* High overheads in performance and energy

* Significant reduction of processing frame rate which is critical in high-speed self-driving

 Significant energy and cooling costs



Outline

* Motivation and Goals
* Fault-Injection into Deep Neural Networks [SC'17]
 BinFl: Efficient Fault Injector for ML systems [SC'19 - to appear]

* Ongoing Work and Conclusions



DNN and Accelerators
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Fault Model and Fault Injection

* Inject one random single bit-flip fault per one inferencing (input)

» 3,000 trials per each latch (less than 1% error bars)

 Silent Data Corruption (SDC): Mismatch with the winner of fault-free execution




Experimental Setup

e Goal:

* |Investigate error sensitivity of different neural networks , data types, bit

positions, positions and types of layers, as well as values

* Design cost-effective mitigation techniques

* Neural Networks:

* AlexNet, CaffeNet, NiN, ConvNet

* Data Types:

* 4 Integers and 3 Floating Points



SDC Types

SDC1:
Mismatch between winners from faulty and fault-free execution.

SDC5:
Winner is not in top 5 predictions in the faulty execution.

SDC10%:
The confidence of the winner drops more than 10%.

SDC20%:
The confidence of the winner drops more than 20%.



RQ1: SDC in DNNs
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1.All SDCs defined have similar SDC probabilities
2.SDC probabilities are different in different DNNs

3.SDC probabilities vary a lot using different data types




RQ2: Bit Sensitivity

FP data types:
™ Only certain exponent bits are vulnerable to SDCs
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FxP data types:

1. High-order bits are vulnerable

2 2. Larger dynamic value range allows more vulnerable bits
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Probablity (%)

RQ3: Value Changes

AlexNet, PE Errors, Float16
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If a neuron value is changed to be a large value

under a fault, it likely causes SDC
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RQ4: SDC in Different Layers
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1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet

2.SDC probability increases as layer numbers increase
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Mitigation: Data Types Binary Point
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Binary Point

Mitigation: Hardware  "P*%"
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Takeaways

* DNNs are not as resilient as one may think
* Single bit-flips can lead to safety-critical outcomes
* Accelerator platforms exacerbate the situation

* Key findings from fault injection study
* Restricted range improves resilience
* Higher-order bits are more sensitive
* Errors that occur in later layers are more impactful

https://github.com/DependableSystemsLab/DNNFI
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https://github.com/DependableSystemsLab/DNNFI

Outline

* Motivation and Goals
* Fault-Injection into Deep Neural Networks [SC'17]
 BinFl: Efficient Fault Injector for ML systems [SC'19 - to appear]

* Ongoing Work and Conclusions

19



Motivation

* Existing approaches — fault injection (Fl)
* Exhaustive Fl: Ground truth, high overhead (impractical)

 Random FI: Statistically significant results, low overhead (not good enough)
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Key Insight

* In ML, a fault only results in numerical changes in the output

e OQutput by ML is usually determined by numerical magnitude
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 Larger deviation in the Output = higher probability of SDCs



ML computations and Monotonicity property

« Approximate monotonicity: A function being non-strictly monotonic in a

non-trivial interval

> E.g., f(x) =100 * max(x - 1,0) - max(x,0), is approximate monotonic when x > 0

« Approach: Analyze the property of the ML functions, which propagate

the fault from fault site to the output

ML function 1

ML function 2

ML function N

l
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Composite function

Analyze the property
= (approximate monotone)



Our Insight

e Approximate the fault propagation behavior as an approximate

monotonic function.
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Fault propagation (approximate monotone)

* Implication: Larger input deviation (fault at higher-order bit) generates

larger deviation at the output, thus more likely to cause SDCs



Our Approach: Binary fault injection (BinFl)

* Identify SDC boundary: faults at higher-order bits would lead to SDCs
and faults from lower-order bits would be masked.

New observation: analyzing
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An example — kNN (k=1)

_1 negPixel = tf (testImg)
Fault relativeDistance = tf (neighbors, negPixel)
. _J 3 absDistance = tf (relativeDistance)
propagation distance = tf (absDistance )
_5 nearestNeighbor = tf (distance, ©)

Each neighbor (|N| in total) has a distance to the input image (dis,,,n € |N| )
For the nearest neighbor , we have dis; < dis;, Vj € [N|,i # j.
Fault propagation (FP): Fault site = tf.abs() = distance (output)
* Mapping from fault site to output: FP(bitFlip) = +abs(bitFlip), + for positive value
deviation; — for negative value deviation.

SDC occurs if the nearest neighbor has changed (i.e., dis; > disj, 3j € |n|), due to bitflip.



An example (cont.)

_1 negPixel = tf (testImg)
- - relativeDistance = tf (neighbors, negPixel)
ip(bltqu?) : J 3 absDistance = tf (relativeDistance)
= tabs(bitFlip) distance = tf (absDistance )
_5 nearestNeighbor = tf (distance, 7)

Assume fault affects the dis;, and dis; remains unchanged:
o dis'; = dis; + abs(bitFlip,,), bit-flip occurs at m;y, bit.
dis"'; = dis; + abs(bitFlip,)), m > n, i.e., myy, bit is the high-order bit.
* We have: abs(bitFlip,,) > abs(bitFlip,), thus dis’;> dis"’;.
* If fault at my, bit does not lead to SDC (by Fl), fault at n;, bit (lower-order) will not lead

to SDC, without actual Fl, because dis’’; < dis'’; < dis;.
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Analyzing ML computations

* Common ML com putatio NS in Basic Conv; MatMul; Add (BiasAdd)
modern DNNs: Activa.tion ReLu; ELu;
Pooling Max-pool; Average-pool
> E 8., AlexN et, VGGNet, Normalization Batch normalization (BN);
Ince ptIO nNet Dave Local Response Normalization (LRN)
] ’ Data transformation | Reshape; Concatenate; Dropout
steering model, etc. Others SoftMax; Residual function

* Monotonic property of ML computation:

» Conv computation: X -W = > xjw;,x; € X,w; € W
» Assume two faults x; > x, > 0 at same location (i.e., different bits).
> We have: |x1wi| > [xawil| , we call Conv is monotonic.

* Apply to most of (not all, e.g., LRN) the other computations, e.g., Pooling, RelLu.
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Evaluation

 Compare different Fl approaches on:

1. Identifying the critical bits.

2. Measuring the overall resilience.

3. Overhead.
Fl tool: TensorFl [1]

Dataset Dataset Description ML models
MNIST [9] Hand-written digits 2-layer NN
LeNet-4 [47]

Survive [13] Prediction of patient kNN

survival

Cifar-10 [4] General images AlexNet [46]
ImageNet [24] General images VGG16 [71]
German traffic sign [38] | Traffic sign images VGG11 [71]

Driving [6]

Driving video frames

Nvidia Dave [19]
Comma.ai [5]




Results

1. BinFl: recall 99+% of critical bits with 99+% precision.

Random Fl: recall less than 65% with 4x overhead more than binFl
2. Overall resilience measurement: Random Fl = BinFl
3. Overhead: ~20% of that by exhaustive Fl (binary search).
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Takeaways

* Many common ML computations exhibit monotonicity

* The monotonicity property constrains the fault propagation

* Critical bits in ML program cluster around higher-order bits

* Can be efficiently found through a binary-search like approach

https://github.com/DependableSystemslLab/TensorFl
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https://github.com/DependableSystemsLab/TensorFI

Outline

* Motivation and Goals
* Fault-Injection into Deep Neural Networks [SC'17]
 BinFl: an Efficient Fault Injector for ML systems [SC'19 - to appear]

* Ongoing Work and Conclusions
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Ongoing Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes = Similar outputs
- Convergence properties
- Differences in outputs - safety-critical

1(6,.0,) |

0,
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Conclusions

* Machine learning reliability is an important problem
* Old problems like soft-errors are still an issue
* Getting worse with scale and deployment
 Violation of safety standards (e.g., 1ISO 26262)

* Single bit-flip faults can lead to safety-critical outcomes
* Need both hardware and software-level protection techniques

* BinFl: Efficient fault-injection for safety-critical ML systems
* |ldentified safety violations in a fraction of time as exhaustive injections

http://blogs.ubc.ca/karthik/



