Slaying Old Dragons: Error-
Resilient Machine Learning for
Safety-Critical Applications

UBC
W Karthik Pattabiraman, Guanpeng (Justin) Li, Zitao Chen

@ Siva Hari, Michael Sullivan, Tim Tsai, Joel Emer, Steve Keckler
AVIDIA.

ﬂ
> Los Alamos Nathan DeBardeleben

Machine Learning

* Machine Learning (ML) Systems work around humans

Home Care Policing Self-Driving Cars

Machine-learning is increasingly used in safety-critical systems

J

Dragons of Machine Learning (ML)

* New dragons
* Adversarial Inputs (Security)
* Edge cases (Reliability)
 Confidentiality/Privacy

* Old dragons
e Soft errors
* Permanent faults
* Logical errors
* Implementation faults (bugs)

Soft Error Problem

Soft errors are increasing in computer systems

~8% degradation/bit/generation N SoC SER FIT rate per node
QZ, 1000
S
Q | . 100
= 3
Wi
10
OO R A S b
]) 200 150 100 50 0
SOft Error FIT/ChIp (Loglc & Mem) Memory SER Is:l.ez(;ture Logic SER

[Chandra et. al., DATE’14]

Source: Shekar Borkar (Intel) - 2005

Why Soft Errors?

B e l e .
f S Object Identified: : !

ol
Transporting Truck 1

: Y | 100000
gt el

2

10000
1000

100

FIT [errors in 10°h]

10

Google Car Humans ASIL-D compliant
(USAcitizens) self-driving car

[Our work - SC 2017]
[Saxena’16]

e Safety standard — Automotive Safety Integrity Level (ASIL-D)
* Error rate <10 FIT (per 1 billion hours) —1SO 26262
* DNN systems do not meet the requirement without protection

Traditional Solutions

* Full redundancy

* Expensive for cost-sensitive domains such as automotive sector
* Profit margin of mid-class sedan: 8-10%
 Efficiency regarding per-unit-price

* High overheads in performance and energy

* Significant reduction of processing frame rate which is critical in high-speed self-driving

 Significant energy and cooling costs

Outline

* Motivation and Goals
* Fault-Injection into Deep Neural Networks [SC'17]
 BinFl: Efficient Fault Injector for ML systems [SC'19 - to appear]

* Ongoing Work and Conclusions

DNN and Accelerators

Conv
Layers

Low-Level
Features

-

-
-

Convolution

Filter

Convolution

ey e

High-Level 1Ca
Features Lar
Conv | i FC | 2pog
Layers | ppr— Layers 3.Bird
= 4
Norm Pooling

/

channels

Output Image

Input Image

Spatial Architecture

Processing Element (PE)

PE

PE

PE

Memory Hierarchy

Fault Model and Fault Injection

* Inject one random single bit-flip fault per one inferencing (input)

» 3,000 trials per each latch (less than 1% error bars)

 Silent Data Corruption (SDC): Mismatch with the winner of fault-free execution

Experimental Setup

e Goal:

* |Investigate error sensitivity of different neural networks , data types, bit

positions, positions and types of layers, as well as values

* Design cost-effective mitigation techniques

* Neural Networks:

* AlexNet, CaffeNet, NiN, ConvNet

* Data Types:

* 4 Integers and 3 Floating Points

SDC Types

SDC1:
Mismatch between winners from faulty and fault-free execution.

SDC5:
Winner is not in top 5 predictions in the faulty execution.

SDC10%:
The confidence of the winner drops more than 10%.

SDC20%:
The confidence of the winner drops more than 20%.

RQ1: SDC in DNNs

S ar T > .8 5.8
¢ Fd) e &g & g
10% a5 S Ew u’.; b
ot Soey Mmoo mE
R r- r"?' r.'r_'? r-pd e
e
6%
F g0 &k A ol
3% 27 2a7 g &e e & @ oy ogdp W ol afp oate s S e 0
= BPre- TR XS x> xE~ & - - MEX MEZ M ME = - T N T - ey o :
32“»; AR~ mnT mm s B30 BST BY OB§ LR LS R§ B§ LA EAn o CH 222 === <& 2=
Q 0% ann e P e oo A0 ARR A0 2007 oo~ e 2000 aann: e e aanm FFEH fiEH - — R -
e 0%
R’ "' A £ # "‘ A * # b w # F 3 b Cy F 3 * il el 3 *) W # #
o U > =] [=] o v =] s o J =] s W ¥ E 2 (¥ [¥] 2 3 (¥ [¥] =] =]
= o 2] by N 2] o ':‘ , o o ':‘ , o 0 , , o o ; : o o v N
“ ¥ “ ¥ ¥ “) ¥ ¥)] ¥ w W W w U T) V) V])) ¥ ¥
O (4] o (&) (&) o o (] o o 0 (]
v v W W i v v T L] L] W w

DOUBLE

FLOAT

FLOAT16

N AlexNet ® CaffeNet

NIN

16b_rb10

32b_rb10

32b_rb26

1.All SDCs defined have similar SDC probabilities
2.SDC probabilities are different in different DNNs

3.SDC probabilities vary a lot using different data types

RQ2: Bit Sensitivity

FP data types:
™ Only certain exponent bits are vulnerable to SDCs

E J.".;

§ 1% 8 §%

o 0% n g |

§ 1514 13 121110 9 B 7 6 § g nwrsnn

Exponent Bits v Exponent Bits

FxP data types:

1. High-order bits are vulnerable

2 2. Larger dynamic value range allows more vulnerable bits

3 20% S— ' .
& : 57.-1 1 Binary Point
[ﬂ]":: ‘ ‘ z -

Q o

: 1 :

o e e, ... o 1l

J e) IE 1%

Probablity (%)

RQ3: Value Changes

AlexNet, PE Errors, Float16

99.9

Neuron Value of Injection
AlexNet PE Faults (FLOAT16)
Total number of data points = 128

float16 fi value
float16 original value

+

-10000

10000 G
20000
30000
40000

Neuron Values

SDC

50000

60000

Probablity (%)

99.999

99.99
99.9

99

cp |

0.1
001 ¢

0.001

Neuron Value of Injection
AlexNet PE Faults (FLOAT16)
Total number of data points = 39,812

T T T T T T

it ¥ oatl6 fi value +
¥ float1® original value
1 1 I 1 1

o o o o o o o o
@) @) O @) (@) o O
(@) (@) O (@) O o O
O O O O O O @)
® 0 b o o N ©

Neuron Values

Benign

If a neuron value is changed to be a large value

under a fault, it likely causes SDC

14

RQ4: SDC in Different Layers

AN0/
> 8% - 40%
= o/ -
— 6 S0 - _
Z 49/, | . / E 30%
m 20.""0 'J'H G
200, ot = 20%
E 0 .-"'0 U d
Y 123 4567 8 9101112 o 1 2 3
T ==AlexNet =—®(CaffeNet NiN

ConvNet

1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet

2.SDC probability increases as layer numbers increase

4

15

Mitigation: Data Types Binary Point

\ 4
10.00% 9.25% Type-21:| 1bit 21 bits 10 bits
9.00% .
g 00, 1-19% Trade off between - Sign bit Integer bits Fractional bits
aniad, 7.01% precision and range
7.00% \
o 6.00%
S 500% Type-5:| 1bit | 5 bits 26 bits
é 4.00%
3.00% 32-Bit Fixed-Point data types as examples
2.00% 0.08%
1.00% 0.03% 0.03% - ~
0.00%
Type-21 Type-5 Restraining dynamic value range
suppresses SDCs
W AlexNet ™ CaffeNet NiN _)

16

Binary Point

Mitigation: Hardware "P*%"

2%

30%
Binary Point Binary Point

20%
1%
10% I |
Illl. 0% 1i_n
31 29 27 25 23 21 19 17 1513 11 9 7 5 3 1

0%
1

SDC Rate
SDC Rate

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3
Bit Position

Bit Position

Type-5

Type-21

Takeaways

* DNNs are not as resilient as one may think
* Single bit-flips can lead to safety-critical outcomes
* Accelerator platforms exacerbate the situation

* Key findings from fault injection study
* Restricted range improves resilience
* Higher-order bits are more sensitive
* Errors that occur in later layers are more impactful

https://github.com/DependableSystemsLab/DNNFI

18

https://github.com/DependableSystemsLab/DNNFI

Outline

* Motivation and Goals
* Fault-Injection into Deep Neural Networks [SC'17]
 BinFl: Efficient Fault Injector for ML systems [SC'19 - to appear]

* Ongoing Work and Conclusions

19

Motivation

* Existing approaches — fault injection (Fl)
* Exhaustive Fl: Ground truth, high overhead (impractical)

 Random FI: Statistically significant results, low overhead (not good enough)

ShC Non-SDC

R R

1 0 o 1 o0 1 1 1 >

e © © o © o o o |OverallSDC=25% |

ual F N e) I 1 Which part is more prone
to SDCs

20

Key Insight

* In ML, a fault only results in numerical changes in the output

e OQutput by ML is usually determined by numerical magnitude

Input ML target / Output
(digit 1)
Input-1 110]3

Weak feature =
—p | 0| 0|2 output =8
Weak response
41019 o
| c
Input-2 oja] o0 1 1 ..g
Medium feature | output =120 c
o]l 4] 0 > 1 0 > . o
— Medium response s
o]l 4] 0 1 0
Input-3 ol 8|l o Convolution
Strong feature (dot-product) _
ol gl o [? d]' |:y Z:l —aw+bx +cy+dz rong response |y

 Larger deviation in the Output = higher probability of SDCs

ML computations and Monotonicity property

« Approximate monotonicity: A function being non-strictly monotonic in a

non-trivial interval

> E.g., f(x) =100 * max(x - 1,0) - max(x,0), is approximate monotonic when x > 0

« Approach: Analyze the property of the ML functions, which propagate

the fault from fault site to the output

ML function 1

ML function 2

ML function N

l

|

Composite function

Analyze the property
= (approximate monotone)

Our Insight

e Approximate the fault propagation behavior as an approximate

monotonic function.

VGG16
>l =|=|(l=2] 2|= — — ||l 2| 2| ==
nput, | 2/ 2/ oll2 2 ol elglg o2 e elollel e 2 ollulu Q) Outut
mm) © 0 O|| 0 o|S 06 6/6 O0/|cg 6 o6/o|lolo o od L
O VAo OV Aaelv00UVUAaAa VULV o

—)
| J

Fault propagation (approximate monotone)

* Implication: Larger input deviation (fault at higher-order bit) generates

larger deviation at the output, thus more likely to cause SDCs

Our Approach: Binary fault injection (BinFl)

* Identify SDC boundary: faults at higher-order bits would lead to SDCs
and faults from lower-order bits would be masked.

New observation: analyzing

Our prior work .
the montonic property

SDCNog:SDC

$

¥ o o o ¥k YW O o ¥ Kk Kk o o o o
+ 1 0 01 0 1 1 1 + 1 0 0 1 0 1 1

- Not result in SDC,
Results in SDC, @ move to higher-order
move to lower-order |

+ ooo!oooo

\ J

sDC " Non-SDC

An example — kNN (k=1)

_1 negPixel = tf (testImg)
Fault relativeDistance = tf (neighbors, negPixel)
. _J 3 absDistance = tf (relativeDistance)
propagation distance = tf (absDistance)
_5 nearestNeighbor = tf (distance, ©)

Each neighbor (|N| in total) has a distance to the input image (dis,,,n € |N|)
For the nearest neighbor , we have dis; < dis;, Vj € [N|,i # j.
Fault propagation (FP): Fault site = tf.abs() = distance (output)
* Mapping from fault site to output: FP(bitFlip) = +abs(bitFlip), + for positive value
deviation; — for negative value deviation.

SDC occurs if the nearest neighbor has changed (i.e., dis; > disj, 3j € |n|), due to bitflip.

An example (cont.)

_1 negPixel = tf (testImg)
- - relativeDistance = tf (neighbors, negPixel)
ip(bltqu?) : J 3 absDistance = tf (relativeDistance)
= tabs(bitFlip) distance = tf (absDistance)
_5 nearestNeighbor = tf (distance, 7)

Assume fault affects the dis;, and dis; remains unchanged:
o dis'; = dis; + abs(bitFlip,,), bit-flip occurs at m;y, bit.
dis"'; = dis; + abs(bitFlip,)), m > n, i.e., myy, bit is the high-order bit.
* We have: abs(bitFlip,,) > abs(bitFlip,), thus dis’;> dis"’;.
* If fault at my, bit does not lead to SDC (by Fl), fault at n;, bit (lower-order) will not lead

to SDC, without actual Fl, because dis’’; < dis'’; < dis;.

26

Analyzing ML computations

* Common ML com putatio NS in Basic Conv; MatMul; Add (BiasAdd)
modern DNNs: Activa.tion ReLu; ELu;
Pooling Max-pool; Average-pool
> E 8., AlexN et, VGGNet, Normalization Batch normalization (BN);
Ince ptIO nNet Dave Local Response Normalization (LRN)
] ’ Data transformation | Reshape; Concatenate; Dropout
steering model, etc. Others SoftMax; Residual function

* Monotonic property of ML computation:

» Conv computation: X -W = > xjw;,x; € X,w; € W
» Assume two faults x; > x, > 0 at same location (i.e., different bits).
> We have: |x1wi| > [xawil| , we call Conv is monotonic.

* Apply to most of (not all, e.g., LRN) the other computations, e.g., Pooling, RelLu.

27

Evaluation

 Compare different Fl approaches on:

1. Identifying the critical bits.

2. Measuring the overall resilience.

3. Overhead.
Fl tool: TensorFl [1]

Dataset Dataset Description ML models
MNIST [9] Hand-written digits 2-layer NN
LeNet-4 [47]

Survive [13] Prediction of patient kNN

survival

Cifar-10 [4] General images AlexNet [46]
ImageNet [24] General images VGG16 [71]
German traffic sign [38] | Traffic sign images VGG11 [71]

Driving [6]

Driving video frames

Nvidia Dave [19]
Comma.ai [5]

Results

1. BinFl: recall 99+% of critical bits with 99+% precision.

Random Fl: recall less than 65% with 4x overhead more than binFl
2. Overall resilience measurement: Random Fl = BinFl
3. Overhead: ~20% of that by exhaustive Fl (binary search).

448384 448384

450000 ...
S 00 100 9956 e |
— 3&3@‘9{@3& -.
2 g Recall 350000 Overhead
o .
XN ,
H .
5% A A =
5w [. Y o ¢ B 200w &
T o i = 150000 CA
;GJJ Dave 100000 ® S o
gg
#all FI # binFl WranFl-1 WranFl-0.5 >0000 >
ranfFl-0.25 ranFl~ 0.2 ranFl~ 0.1 ranFl~ 0.05 0

Takeaways

* Many common ML computations exhibit monotonicity

* The monotonicity property constrains the fault propagation

* Critical bits in ML program cluster around higher-order bits

* Can be efficiently found through a binary-search like approach

https://github.com/DependableSystemslLab/TensorFl

30

https://github.com/DependableSystemsLab/TensorFI

Outline

* Motivation and Goals
* Fault-Injection into Deep Neural Networks [SC'17]
 BinFl: an Efficient Fault Injector for ML systems [SC'19 - to appear]

* Ongoing Work and Conclusions

31

Ongoing Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes = Similar outputs
- Convergence properties
- Differences in outputs - safety-critical

1(6,.0,) |

0,

32

Conclusions

* Machine learning reliability is an important problem
* Old problems like soft-errors are still an issue
* Getting worse with scale and deployment
 Violation of safety standards (e.g., 1ISO 26262)

* Single bit-flip faults can lead to safety-critical outcomes
* Need both hardware and software-level protection techniques

* BinFl: Efficient fault-injection for safety-critical ML systems
* |ldentified safety violations in a fraction of time as exhaustive injections

http://blogs.ubc.ca/karthik/

